A Novel Type V TA System Where mRNA for Toxin GhoT is Cleaved by Antitoxin GhoS
نویسندگان
چکیده
Among bacterial toxin-antitoxin systems, to date no antitoxin has been identified that functions by cleaving toxin mRNA. Here we show that YjdO (renamed GhoT) is a membrane lytic peptide that causes ghost cell formation (lysed cells with damaged membranes) and increases persistence (persister cells are tolerant to antibiotics without undergoing genetic change). GhoT is part of a new toxin-antitoxin system with YjdK (renamed GhoS) because in vitro RNA degradation studies, quantitative real-time reverse-transcription PCR and whole-transcriptome studies revealed that GhoS masks GhoT toxicity by cleaving specifically yjdO (ghoT) mRNA. Alanine substitutions showed that Arg28 is important for GhoS activity, and RNA sequencing indicated that the GhoS cleavage site is rich in U and A. The NMR structure of GhoS indicates it is related to the CRISPR-associated-2 RNase, and GhoS is a monomer. Hence, GhoT-GhoS is to our knowledge the first type V toxin-antitoxin system where a protein antitoxin inhibits the toxin by cleaving specifically its mRNA.
منابع مشابه
Type II toxin/antitoxin MqsR/MqsA controls type V toxin/antitoxin GhoT/GhoS.
Toxin endoribonucleases of toxin/antitoxin (TA) systems regulate protein production by selectively degrading mRNAs but have never been shown to control other TA systems. Here we demonstrate that toxin MqsR of the MqsR/MqsA system enriches toxin ghoT mRNA in vivo and in vitro, since this transcript lacks the primary MqsR cleavage site 5'-GCU. GhoT is a membrane toxin that causes the ghost cell p...
متن کاملToxin GhoT of the GhoT/GhoS toxin/antitoxin system damages the cell membrane to reduce adenosine triphosphate and to reduce growth under stress.
Toxin/antitoxin (TA) systems perhaps enable cells to reduce their metabolism to weather environmental challenges although there is little evidence to support this hypothesis. Escherichia coli GhoT/GhoS is a TA system in which toxin GhoT expression is reduced by cleavage of its messenger RNA (mRNA) by antitoxin GhoS, and TA system MqsR/MqsA controls GhoT/GhoS through differential mRNA decay. How...
متن کاملde novo Synthesis of a Bacterial Toxin/Antitoxin System
The prevalence of toxin/antitoxin (TA) systems in almost all genomes suggests they evolve rapidly. Here we show that an antitoxin from a type V system (GhoS, an endoribonuclease specific for the mRNA of the toxin GhoT) can be converted into a novel toxin (ArT) simply by adding two mutations. In contrast to GhoS, which increases growth, the new toxin ArT decreases growth dramatically in Escheric...
متن کاملA new type V toxin-antitoxin system where mRNA for toxin GhoT is cleaved by antitoxin GhoS
Toxin-antitoxin systems are found in nearly all bacterial chromosomes1, which attests to their importance in cell physiology. Toxin-antitoxin systems are classified as type I if the antitoxin RNA prevents the translation of toxin RNA, type II if the antitoxin protein binds and inhibits the toxin protein and type III if the antitoxin RNA binds and inhibits the protein toxin2. Also, a type IV des...
متن کاملOrphan Toxin OrtT (YdcX) of Escherichia coli Reduces Growth during the Stringent Response
Toxin/antitoxin (TA) systems are nearly universal in prokaryotes; toxins are paired with antitoxins which inactivate them until the toxins are utilized. Here we explore whether toxins may function alone; i.e., whether a toxin which lacks a corresponding antitoxin (orphan toxin) is physiologically relevant. By focusing on a homologous protein of the membrane-damaging toxin GhoT of the Escherichi...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 8 شماره
صفحات -
تاریخ انتشار 2012